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1. Introduction

The holomorphic anomaly equations [5] are a most powerful tool which potentially allows

for the complete solution of topological string theories [30], once complemented with suit-

able methods to fix the holomorphic ambiguities. Nowadays they are experiencing a second

youth due to the development of new techniques based on modular invariance which are

very effective to solve the recursion relations and fix the holomorphic ambiguity up to

very high orders [16]. Moreover, it has been possible to define, via string dualities, a clear

correspondence with matrix models [13].

The most exciting and mysterious string duality in the game is the one among open and

closed strings. This predicts that open and closed string theories in generically different

target space backgrounds can be mapped one into the other via a suitable dictionary.

Open/closed duality has to manifest in its full glory in the cases when complete control

of the string theory is at hand. This is indeed the case of the topological string. In

this case, on the closed string side, the full solution of the theory should be provided

by the holomorphic anomaly equations (from now on HAE’s for short) and therefore its

open string dual is expected to be fully tractable too. The considerable amount of results

on topological aspects of gauge/string dualities obtained during the last years, starting

from [14, 11], encourage to consider the problem of formulating HAE’s for open string

moduli. Actually, the HAE’s for closed moduli in presence of boundaries has been recently

explored in [22, 13] for local CY’s by exploiting the relation with matrix models and

in [29] for compact CY’s extending the original BCOV formulation.1 The boundary effects

1After the submission of this paper, the interesting twin papers [3] and [21] appeared explicating and

solving the extended HAE’s of [29] for closed moduli on the quintic.
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calculated in [29] have been immediately reinterpreted in [8] in terms of a shift of variables

in the usual BCOV equations. This was done at frozen open string moduli. Moreover,

various aspects of open topological string disk amplitudes were studied in [24, 2, 1] for

local CY’s and in [28] for compact ones. Some of these amplitudes have been observed to

be related to four-dimensional effective terms which are of relevance in phenomenological

applications of open superstring compactifications, as computing Yukawa couplings [9, 25]

and gaugino masses [4]. Moreover the explicit calculations of these papers display an

anti-holomorphic dependence.

The aim of this letter is to start exploring the HAE’s for open strings and the in-

tertwining among open and closed moduli. Our main results are two. First of all, we

formulate the HAE’s for open string moduli. Their structure is modeled, analogously to

the closed string case, on the boundary of a suitable compactification of the moduli space

of open Riemann surfaces. The definition of this compactification scheme at all genera is

at our knowledge new. Secondly, we complete the HAE’s for closed moduli in the case in

which open strings moduli are turned on. We will work out our results for simplicity in

the B-model language, but its analogue holds for the A-model too.

The plan of the paper is the following. In section 2 we recall some notations and list the

marginal bulk and boundary deformations of the open B-model. In section 3 we formulate

the relevant compactification of the moduli space of open Riemann surfaces by generalizing

the recipe by Deligne and Mumford [10]. In section 4 we obtain via detailed path integral

arguments the HAE’s for the open string moduli corresponding to the marginal boundary

deformations and in section 5 we complete the HAE’s for the closed string moduli in

presence of open string ones. We left section 6 for some comments and open questions.

2. Boundary marginal deformations

Let us start by defining the B-model action and path integral in the case of strings with

boundary. In the standard BCOV notation2 the action is

SB(bulk) = {Q,V } + W (2.1)

where Q = Q̄+ + Q̄− is the BRST charge, V =
∫

Σg,h
gIJ̄ρI ∧∗dX J̄ is the gauge fermion and

W = −
∫

Σg,h
θ · ∧Dρ + 1

2R · (ρ ∧ ρ ηθ) is the classical action [30]. The B-model partition

function at given genus g and holes h is calculated by the path integral

Fg,h =

∫

M̄g,h

〈

3g−3+h
∏

k=1

|(µk, G
−)|2

h
∏

a=1

(λa, G
−)〉Σg,h

(2.2)

where M̄g,h is the (compactified) moduli space of complex structures over Riemann surfaces

Σg,h. This will be described in detail in the next section. In (2.2), µk are the Beltrami

differentials parametrizing the variations of the metric in the bulk of the Riemann surface

and the positions of the boundary components, λa are the Beltrami differentials associated

2We follow the conventions of [18, 20], to which we refer for details.
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with the variations of the lengths of the boundary components: as such they are supported

near the boundary ∂Σg,h itself. Moreover (µ,G−) =
∫

Σg,h
µz̄

zG
−
z̄z̄ is the pairing among

the G− supercurrent and the complex Beltrami differential µ, (λ,G−) =
∫

Σg,h
λz̄

zG
−
z̄z̄ +

λ̄z
z̄Ḡ

−
zz is the pairing among the supercurrents G− and Ḡ− with the Beltrami differentials λ

corresponding to the real moduli. Finally, 〈. . . 〉Σg,h
indicates the path integral amplitude

of the topological σ-model. The structure of the supercurrent insertions paired with the

relevant Beltrami differentials generates the Weyl-Petersson measure on M̄g,h.

In the case of open strings, it is possible to add to the bulk action (2.1) the boundary

coupling to a gauge field in the form of a supersymmetric Wilson line. This reads3

SB(boundary) = i

∮

∂Σg,h

(

X∗(A) + (FA)IJ̄ ρIηJ̄
)

(2.3)

and can be rewritten [18] in the manifestly supersymmetric form

Sb = Q

∮

∂Σg,h

AI(X)ρI +

∮

∂Σg,h

Q̄AĪ(X)ηĪ (2.4)

if the gauge connection is holomorphic, that is if it satisfies F
(2,0)
A = 0. In (2.4) we used

the anti-BRST charge Q̄ = Q+ + Q−. The total action of the B model is therefore

SB = SB(bulk) + SB(boundary) . (2.5)

The generalization to the case of non abelian gauge bundles is straightforward and corre-

sponds to the usual path-ordering of the Wilson line (2.3).

The generic marginal deformations are given by the closed string moduli corresponding

to variations of the CY complex structure and by the open string moduli corresponding to

the variations of the complexified gauge connection. Specifically, we have4

δSB = Q̄+Q̄−

∫

Σg,h

δtīφī +

∫

Σg,h

Q+Q−δtiφi +

+Q

∮

∂Σg,h

(

δtᾱΘᾱ + δtīΨī

)

+

∮

∂Σg,h

Q̄
(

δtαΘα + δtiΨi

)

(2.6)

where, for the B model

φī = (wī)IJ (X)ρI
zρ

J
z̄ , φi = (w̄i)Ī J̄ (X)ηĪθJ̄ , (2.7)

Θᾱ =
(

δA
(1,0)
ᾱ

)

I
(X)

(

ρI
z + ρI

z̄

)

, Θα =
(

δA(0,1)
α

)

Ī
(X)ηĪ , (2.8)

Ψī =
[

(wī)
J̄
I A

(0,1)

J̄

]

(X)
(

ρI
z + ρI

z̄

)

, Ψi =
[

(wi)
J
Ī A

(1,0)
J

]

(X)ηĪ . (2.9)

Notice that here and in the following we use latin low-case letters for closed string moduli

ti and greek low-case letters for open string moduli tα. In (2.9), wī is a basis of Beltrami

3If the gauge bundle is non-trivial, a more refined expression is required see [12].
4Not to overweight the notation, we omit the summation over the boundary components which is left

understood.
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differentials on the target space, so that δtīwī parametrizes the variation of the target space

complex structure, and similarly δA
(0,1)
α and δA

(1,0)
ᾱ for the variation of the complexified

gauge connection. Notice that, as it is clear from (2.6), the complex moduli couple to the

boundary action but the contrary doesn’t hold. This simple fact has profound consequences

on the structure of the complete holomorphic anomaly equations.

In order to complete the holomorphic anomaly equations with variations of the open

strings moduli, we have to study the compactification of the moduli space of Riemann

surfaces with boundaries.

3. Compactification of the moduli space of Riemann surfaces with bound-

aries

Let Σg,h be as above and let us consider the moduli space Mg,h of inequivalent complex

structures over it. We take Σg,h to be equipped with a constant curvature metric with

vanishing geodesic curvature along the boundary components. In this section we formulate

the analog of the Deligne-Mumford compactification of Mg for the case at hand. In the

boundaryless case, the set of Riemann surfaces is augmented by the inclusion of surfaces

with nodes in order to stabilize the shrinking to zero length of closed 1-cycles. If boundaries

are present, the situation can be treated similarly by adding boundary nodes. In fact, these

are generated by shrinking to zero length open 1-cycles with end points on the boundary.

This means that we have to consider the full set of Riemann surfaces with marked points

in Σg,h \ ∂Σg,h, which are the usual ones, as well as marked points on the boundary ∂Σg,h.

Let us denote by Mg,h,n,m the moduli space of Riemann surfaces with genus g, h holes,

n marked points in Σg,h \ ∂Σg,h and m ∈ N
h ordered marked points on the h boundary

components. If the Euler characteristic5

χ = 2 − 2g − n − h −
1

2
|m| (3.1)

is negative, then the real dimension of such a space is

dimRMg,h,n,m = 6g − 6 + 2n + 3h + |m|, (3.2)

where |m| =
∑h

a=1 ma is the total number of boundary punctures.

The boundary components of Mg,h,n,m can be reached by two distinct limiting proce-

dures, that is by shrinking to zero length homotopically non trivial closed paths or open

paths ending on the boundary. These procedures generate different boundary components

which are generically of different codimensions. The Euler characteristic 3.1 is stable under

these degenerations. Let us describe them in detail.

Let us start from the case of closed paths. In this case we have

∂cMg,h,n,m = Mg−1,h,n+2,m ∪
∐

g1+g2=g, h1+h2=h
n1+n2=n+2, m1⊕m2=m

Mg1,h1,n1,m1 ×Mg2,h2,n2,m2 (3.3)

5This formula can be obtained straightforwardly just by building the Schottky double of the Riemann

surface with nodes and then assigning democratically among the two halves the weight of the boundary

punctures.
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Figure 1: Boundary associated to a non-dividing closed path.

Figure 2: Boundary associated to a dividing closed path.

Figure 3: Boundary associated to the shrinking of a hole.

where the first component corresponds to a non dividing cycle, see figure 1, and the others

to dividing ones, see figure 2. In the above sum also genus zero contributions are counted.

In particular, if the closed path encircles a single hole as in figure 3, then the resulting

boundary component is the zero length limit of the hole and its real codimension is equal

to one.

For open paths one has two choices regarding if the path connects two distinguished

or the same boundary components. In the first case, see figure 4, the path can not be

dividing, while it can be dividing or not dividing in the latter as shown in figures 5 and 6

respectively.
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Figure 4: Boundary associated to colliding holes.

Figure 5: Boundary associated to a dividing open path.

Figure 6: Boundary associated to a non-dividing open path.

The boundary components are then three

∂oMg,h,n,m = Mg−1,h+1,n,m̂⊕(ml+1,mr+1) ∪ (3.4)
∐

g1+g2=g, n1+n2=n

h1+h2=h+1, m1⊕m2=m̂⊕(ml+1,mr+1)

Mg1,h1,n1,m1 ×Mg2,h2,n2,m2 ∪M
g,h−1,n,ˆ̂m⊕(m+m′+2)

where the first one is for non dividing open paths connecting the same boundary compo-

nent (figure 6), the second one is for dividing open paths connecting the same boundary

component (figure 5), and the third one is for open paths connecting different boundary

components (figure 4). In the above formulas, the ”hats” over the boundary punctures

– 6 –
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Figure 7: Shrinking of a closed path as ǫ → 0.

Figure 8: Shrinking of an open path as ε → 0.

labels means the omission of the entry on the vector corresponding to the boundary com-

ponent(s) over which the open path ends. Notice the important fact that all the boundary

components in ∂oMg,h,n,m are of real codimension one.

Let us here insist on the relevance of the specific codimensionality. Actually, in the

vicinity of a closed shrinking path, the local geometry of the Riemann surface is that of

the collar zw = ǫ, ǫ ∈ C as ǫ ∼ 0. This geometry has a trivial S1 symmetry corresponding

to the twisting angle along the path of the phase of the complex valued plumbing fixture ǫ.

This implies that the corresponding boundary component in the moduli space has complex

codimension one.6 In the limiting case, one obtains the nodal geometry zw = 0, see figure 7.

On the contrary, in the vicinity of an open shrinking path, the local geometry of

the Riemann surface is the exterior of an hyperbola Re(z)Im(z) > ε, ε ∈ R
+ in the limit

ε ∼ 0. This geometry has no S1 symmetry at all and therefore the corresponding boundary

component in the moduli space has real codimension one. In the limiting case, one obtains

locally the biquadrant geometry Re(z)Im(z) > 0 corresponding to the boundary nodes,

see figure 8.

We will show in the following that the holomorphic anomaly for open string moduli is

structured over the decomposition of ∂oMg,h,n,m in the very same way as the (extended)

holomorphic anomaly for closed string moduli is structured over the decomposition of

∂cMg,h,n,m.

4. The open moduli holomorphic anomaly

In this section we obtain the holomorphic anomaly equations for open moduli. This will be

done by generalizing the path integral approach of BCOV to the variation of the Q-exact

part of the boundary action and by pulling the corresponding conserved supercharge.

6The only exception is given by the already discussed hole’s shrinking where the S
1 coordinate stays as

an automorphism of the punctured disk.
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t

Figure 9: Action of the supercharge at the boundary.

Let us start by considering the boundary marginal deformations associated to the

operators Θᾱ in (2.6). So we calculate

∂t̄ᾱFg,h =

∫

Mg,h

〈Q

∫

∂Σg,h

Θᾱ

3g−3+h
∏

k=1

|(µk, G
−)|2

h
∏

a=1

(λa, G
−)〉Σg,h

(4.1)

where action of the supercharge on the boundary integral is given by

Q

∮

∂Σg,h

Θᾱ =

∮

∂Σg,h

dt

∫

γt

dt′
(

G+ + Ḡ+
)

(t′)Θᾱ(t) , (4.2)

with γt the path encircling the Θᾱ evaluation point as in the following figure 9.

We calculate (4.1) by pulling the supercharge Q against the measure. The supercharge

Q acts both on the complex and the real Beltrami differentials (µ,G−) and (λ,G−) respec-

tively. By using the standard superalgebra and the formula for the derivative with respect

to the moduli ∂n〈X〉 = 〈X
∫

T · νn〉, where νn is a Beltrami differential corresponding to

the generic modulus n, we obtain

∂t̄ᾱFg,h =

∫

Mg,h

{ 3g−3+h
∑

j=1

∂

∂mj
〈

∫

∂Σg,h

Θᾱ(µ̄j , Ḡ
−)

∏

k 6=j

|(µk, G
−)|2

h
∏

a=1

(λa, G
−)〉Σg,h

+ cplx.conj. +

h
∑

b=1

∂

∂lb
〈

∫

∂Σg,h

Θᾱ

3g−3+h
∏

k=1

|(µk, G
−)|2

∏

a6=b

(λa, G
−)〉Σg,h

}

. (4.3)

Notice that the resulting amplitude is different to the one that is produced by deforming

via bulk marginal operators φī (see [5]). In that case one has to pull two supercharges

against the measure and therefore gets two derivatives w.r.t. moduli ∂m∂m̄〈. . .〉 picking up

the logarithmically divergent term in the correlation function 〈. . .〉Σǫ ∼ 〈. . .〉Σnodal
ln|ǫ| +

regular terms. By varying instead via boundary marginal operators Θᾱ one is pulling one

supercharge against the measure and therefore gets a single derivative as in (4.3). We

can now use Stokes theorem on the moduli space and reduce the integral to its boundary.

The boundary contribution is then given by the (finite) limit of the amplitude on the

– 8 –
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Figure 10: The infinite strip contribution.

degenerate Riemann surface obtained by shrinking to the real codimension one component

of the moduli space. This was studied in the previous section where we described in detail

its compactification and its real codimension one boundary structure. This is the relevant

contribution for the open string moduli.

In order to calculate the boundary terms, we follow a technique similar to the one

developed in [5], see sections 3 and 4, although adapted to the present case. A Riemann

surface sitting in the neighborhood of the open boundary of the moduli space ∂oMg,h,

see (3.4), has a long strip which becomes a boundary node in the degeneration limit ε → 0

as in figure 8. We can choose coordinates near ∂oMg,h as (ε,m′, t1, t2) where ε is the

real plumbing fixture coordinate and (m′, t1, t2) are the moduli of the punctured Riemann

surface resulting from the degeneration ε → 0. In particular (t1, t2) are the locations of

the boundary punctures. In the limit ε → 0 the Beltrami differentials associated to the

boundary collision are supported near (t1, t2) and their contribution to the measure reads
∫

γt1

(G− + Ḡ−)

∫

γt2

(G− + Ḡ−) . (4.4)

The contribution from ∂oMg,h to (4.3) is then

∫

∂oMg,h

〈

∫

∂Σg,h

Θᾱ

∫

γt1

(G− + Ḡ−)

∫

γt2

(G− + Ḡ−)
∏

(m′, G−)〉Σg,h
(4.5)

where
∏

(m′, G−) is the left-over measure factor corresponding to the moduli m′.

Let we now rewrite the path integral on the long strip as depicted in figure 10. Namely,

we insert two chiral resolutions of the open string states identity
∑

X |X〉〈X| at the two

ends and two anti-chiral ones
∑

X̄ |X̄〉〈X̄ | in the middle. In the ε → 0 limit, corresponding

to the infinite length of the strip (see figure 10), only the ground states do contribute and

the contributions of the two halves of the long strip give the open string metric insertions

by definition. Moreover, the only contribution to (4.5) is when Θᾱ is integrated along a

– 9 –
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Figure 11: The infinite tube contribution.

boundary component involved in the degeneration limit, more precisely in the unit disk in

the middle of the strip (see once more figure 10). In fact, when Θᾱ is on a different boundary

component, the amplitude is vanishing due to ghost number conservation. Then (4.5)

becomes ∫

∂oMg,h

〈Θβ

∮

∂Σ0,1

ΘᾱΘγ〉Σ0,1〈Q̄ΘβQ̄Θγ

∏

(m′, G−)〉Σsingular
(4.6)

Actually, due to PSL(2, R) symmetry, we can fix all the three angular positions of the disk

insertions. The three-point function

∆β̄ᾱγ̄ = 〈Θβ(−1)

∮

∂Σ0,1

ΘᾱΘγ(1)〉Σ0,1 (4.7)

gives two contributions, corresponding to the two different orderings of three points on the

disk boundary, which anti-symmetrize the two possible intermediate insertions.

The second factor in (4.6) can be rewritten as two covariant derivatives of the topo-

logical string amplitude for the boundary Riemann surface Σsingular.

As it has been already discussed in section 3, the real codimension one component of

the moduli space contributing to (4.1) includes also a component from Riemann surfaces

obtained by shrinking to zero the length of the boundaries (see figure 3). Therefore, on

top of ∂oMg,h, we have to consider the term Mg,h−1,n+1,m̂ ×M0,1,1,m in (3.3). Near this

boundary component, the Riemann surface develops a long tube.

Let we now rewrite the path integral on the long tube as depicted in figure 11. Namely,

we insert a chiral resolution of the closed string states identity
∑

ϕ |ϕ〉〈ϕ| at the beginning

of the tube and an anti-chiral one
∑

ϕ̄ |ϕ̄〉〈ϕ̄| at the end (see figure 11). In the shrinking

limit the amplitude gets projected on the chiral bulk ground states and we therefore get
∫

Mg,h−1

gīi〈

∮

∂Σ0,1

Θᾱφī〉Σ0,1〈

∫

Σg,h−1

Q̄+Q̄−φi

∏

(m′, G−)〉Σg,h−1
(4.8)

where the Q̄+Q̄− action is induced by the Beltrami differentials supported near the punc-

ture. As before, due to the PSL(2, R) invariance, the bulk to boundary disk function
∮

∂Σ0,1
〈Θᾱφī〉Σ0,1 is effectively unintegrated. The only contribution comes when the Θᾱ in-

sertion is along the boundary component at the end of the tube. The second factor of (4.8)

can be rewritten as the holomorphic derivative of the amplitude on Σg,h−1.

– 10 –
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Summing the result of this manipulations we get the following four contributions cor-

responding to the pinching and dividing open paths connecting the same boundary com-

ponent, the colliding of two boundaries and the shrinking of the holes length respectively

∂t̄ᾱFg,h =
1

2
gβ̄βgγ̄γ∆β̄ᾱγ̄

[

DβDγFg−1,h+1 (4.9)

+
∑

g1+g2=g

h1+h2=h+1

DβFg1,h1DγFg2,h2 + DβDγFg,h−1

]

+ gīiΠᾱīDiFg,h−1

where gαᾱ is the open string moduli metric (as in section 4 in [5]) and

Πᾱī = 〈Θᾱφī〉Σ0,1 (4.10)

is the overlap function.

Finally, in (4.9), Dα = ∂α − (2− 2g −h)∂αKopen −Γα is the covariant derivative in the

open string holomorphic moduli, and Di = ∂i − (2 − 2g − h)∂iKclosed − Γi is the covariant

derivative in the closed string moduli. The first term in the connection appears since Fg,h

is a section of the L2−2g−h line bundle associated to the rescaling of the holomorphic three

form of the Calabi-Yau. The two Kähler potentials are related to the vacua normalizations

in the open and closed sectors.

Let us remark that the open string amplitude Fg,h is parametrized by the full boundary

chiral ring H
0,1
∂̄A

(

X,Ea × Eb∗
)

, where Ea labels the different Chan-Paton indices associ-

ated to the branes [19]. Therefore the boundary insertions in the above disk amplitude

involve different chiral sectors corresponding to the specific boundary conditions for the

open strings. In particular, as it has been already observed in the explicit computations at

genus 0 in [9, 4], a non trivial holomorphic anomaly in the open string sector can be present

only if at least three different kinds of branes are involved. Actually, this is necessary for

the first disk contribution in (4.9) not to vanish. Notice that this result is in agreement

also with calculations performed in local Calabi-Yau’s ([1, 2, 13, 22]), where a single brane

type appears and no holomorphic anomaly in the open sector is observed.

5. Closed moduli in presence of Wilson lines

Let us now consider the variation of the closed string moduli in presence of non zero Wilson

lines. This, as we explained in (2.6), on top of generating bulk insertions will add some

boundary insertions mixing again open and closed moduli. We calculate henceforth the

variation of the topological string amplitude Fg,h under an anti-holomorphic shift w as

in (2.6). This gives

∂t̄̄i
Fg,h =

∫

Mg,h

〈

(

Q̄+Q̄−

∫

Σg,h

φī + Q

∮

∂Σg,h

Ψī

)

3g−3+h
∏

k=1

|(µk, G
−)|2

h
∏

a=1

(λa, G
−)〉Σg,h

(5.1)

where we used the notation introduced in (2.9). For the sake of clarity, we split the

calculation in the two additive factors in (5.1).
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The first contribution in (5.1): has been already studied in [29] in the case in which

the Wilson lines were frozen. The same analysis can be repeated here with some care

concerning the symmetries of the action (2.1). In fact, in presence of the boundaries only

the combinations Q and Q̄ are preserved implying that some new terms could arise once

pulling the non conserved supercharges. Smeargingly, once we define the nonconserved

charge Q′ =
∮

(G+ − Ḡ+), the first term is

∫

Mg,h

〈

(

−
1

2

)

QQ′

∫

Σg,h

φī

3g−3+h
∏

k=1

|(µk, G−)|2
h

∏

a=1

(λa, G
−)〉Σg,h

(5.2)

While the charge Q can be harmlessly pulled against the measure factor, the charge Q′

generates a new contribution proportional to Q′SB . Notice that this is the integrated

boundary insertion of the broken supercurrent J ′ = G+ − Ḡ+. We thus get

∫

Mg,h

〈

∫

Σg,h

φī

(

−
1

2
QQ′

3g−3+h
∏

k=1

|(µk, G
−)|2

)

h
∏

a=1

(λa, G
−)

+

∫

Σg,h

φ
[1]

ī

3g−3+h
∏

k=1

|(µk, G
−)|2

(

Q

h
∏

a=1

(λa, G
−)

)

〉Σg,h
(5.3)

+

∫

Mg,h

〈

∫

Σg,h

φī

(

1

2

∫

∂Σg,h

J ′

)(

Q

3g−3+h
∏

k=1

|(µk, G
−)|2

)

h
∏

a=1

(λa, G
−)〉Σg,h

where we defined φ
[1]

ī
= 1

2Q′φī and we used the fact that the action of the non-conserved

charge Q′ on the factor of the measure containing the λa differential is zero since it does

not couple to the real moduli.

The first two terms in (5.3) give rise to the extended HAE studied in [29], while the

last term is a new contribution which we now calculate. The degeneration of the Riemann

surface associated with the action of Q in the last term of (5.3) gives rise to a long strip

and again this projects, as described in the previous section, on chiral boundary operators.

Because of ghost number conservation, the only contribution can come when both φī and

J ′ are on the strip. We are then left with

1

2
gβ̄βgγ̄γBβ̄īγ̄






DβDγFg−1,h+1 + DβDγFg,h−1 +

∑

g1+g2=g

h1+h2=h+1

DβFg1,h1DγFg2,h2






(5.4)

where

Bβ̄īγ̄ =

∫ 2π

0
dϑ

∫ 1

0
dr〈Θβ̄(−1)J ′(eiϑ)φī(r)Θγ̄(1)〉Σ0,1 . (5.5)

The second term in (5.1): has exactly the same structure of (4.1) and therefore can be

calculated in full analogy with what we did in the previous section. This gives the following
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contribution

1

2
gβ̄βgγ̄γ∆′

β̄īγ̄






DβDγFg−1,h+1+DβDγFg,h−1 +

∑

g1+g2=g

h1+h2=h+1

DβFg1,h1DγFg2,h2






+gjj̄∆′

īj̄DjFg,h−1

(5.6)

where

∆′
β̄īγ̄

= 〈Θβ̄

∮

Σ0,1

ΨīΘγ̄〉Σ0,1 (5.7)

and ∆′
īj̄

= 〈φj̄Ψī〉Σ0,1 .

Adding the two contributions of (5.1) we get the complete extended HAE for closed

moduli which reads

∂t̄̄i
Fg,h =

1

2
C

jk

ī







∑

g1+g2=g

h1+h2=h

DjFg1,h1DkFg2,h2+DjDkFg−1,h






−(∆ + ∆′)j

ī
DjFg,h−1 + (5.8)

+
1

2
(∆′ + B)βγ

ī






DβDγFg−1,h+1 + DβDγFg,h−1 +

∑

g1+g2=g

h1+h2=h+1

DβFg1,h1DγFg2,h2







The indexes (i, α) of the closed and open moduli are raised as usual via the (inverse)

hermitian closed and open string metrics respectively.

Notice that switching off the Wilson lines at A = 0 and declaring all the open moduli

derivatives Dα to be zero at A = 0 we recover as a sub-case the result in [29].

6. Open issues

The main open issue is to understand the relationship between the HAE’s for open and

closed moduli in the spirit of gauge/string duality. The similarity among the combinatorial

structures of the boundary of the compactified moduli spaces of Riemann surfaces under

the shrinking of open and closed paths as described in section 3 should play a full role in

the solution of this open issue and could enlarge our knowledge about open/closed string

duality. In this context it will be crucial to develop a complete tt∗-geometry for open

and closed moduli. This was analyzed in [7] for the closed string and in [5, 17] for the

open string. Actually, to our knowledge, the full tt∗-geometric structure is still uncovered.

Its geometrical data will include all the mixed (open and closed) correlators entering our

complete HAE’s, and would provide a geometrical interpretation to them. Our analysis

is valid for Riemann surfaces with negative Euler characteristic. As in the usual BCOV

case, the other cases have to be studied by direct inspection. In particular the holomorphic

anomaly for the annulus amplitude should be related to the Quillen anomaly [5, 22, 29],

while the bulk-to-boundary disk two point functions should have some relation to the Abel-

Jacobi map [26, 29]. These specific correlators provide, up to the open moduli holomorphic

ambiguity, the data needed to study the complete HAE’s. As an example one could study
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the particular case of the quintic and the explicit form of our equations by implementing

the complete HAE’s in the context of [23] and [6].7

The comparison of the B-model case, which we discussed in detail in this letter, and

the A-model could have some applications to mirror symmetry. This should be done with

the due care following the lines of [26] and offers a relation to the open Gromov-Witten

invariants [15].

It is well possible that under some favorable conditions one could find a suitable set

of coordinates which simplifies the structure of the HAE’s by reabsorbing the dependence

on the open moduli by a shift of the closed ones or viceversa. A better comprehension

of the general structure could be gained by studying HAE’s in a resummed form for the

generating function F(gs, λ) =
∑

g,h Fg,hg
2g−2+h
s λh. Actually, using this perspective it was

shown in [8] that the boundary effects in the closed HAE’s at frozen Wilson lines studied

in [29] can be re-casted in a shift of variables of the closed string moduli. Moreover, in

the open string case we find that the HAE’s do involve in the right-hand-side terms with

higher number of boundary components, although with lower genera. As such they do

not admit an interpretation as recursive relations in the genus equal to the one found

in the closed string case [5]. The correct quantity to be considered in the case of open

Riemann surfaces is instead χΣg,h
= 2 − 2g − h which increases passing to the moduli

space boundary components (while the stabilized Euler characteristic (3.1) of section 3 is

of course invariant). Namely, the HAE’s relate the anti-holomorphic derivatives of the Fg,h

to the holomorphic derivatives of the same objects with lower 2g + h− 2 (and, needless to

say, not increasing genus). It would be very useful to explore this point in further detail in

order to understand the resolvability of the complete HAE’s.

The analogue of the analysis in [13] should hold for our HAE’s too, by mapping them

to loop equations for suitable matrix models. Notice that since we included in our analysis

non-trivial boundary states, we expect our equations to be viable also for the analysis of

local Calabi-Yau’s, by properly taking into account the presence of a non-trivial superpo-

tential which modifies the boundary chiral ring.

Restricting our results to genus zero one should reproduce [9, 4, 25]. Actually one

can check that our equations reduce for g = 0 to the ones obtained in [4] after a suitable

interpretation of peculiar operatorial insertions.8 In [4] it was observed that the amplitudes

Fg,h for g > 0 do not have a straightforward interpretation as F-terms in a four-dimensional

Poincaré invariant superstring compactification on R4×CY. The low-energy limit of these

amplitudes can be nonetheless interpreted as the superpotential of the four dimensional

N = 1 field theory living on space-time filling branes wrapped on internal cycles of the

(non-compact) CY [27].

The analysis of our equations could clarify some issues on the (non-)holomorphicity

of these superpotentials which arise in the study of intersecting brane models [9]. To this

7The dependence on the closed moduli has been analyzed at frozen open moduli in [29].
8Specifically, our equations (4.9) and (5.8) reduce for genus zero to eqs.(4.6-8) in [4], the major difference

being that we obtained an explicit expression for the amplitudes with anti-chiral insertions in [4] in terms of

derivatives of chiral amplitudes contracted with open/closed string metric and disk functions. This allowed

us to write a closed system of equations.
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end, one should also generalize the analysis presented in this letter to the non-abelian case

and study in detail the boundary conditions for the open strings in presence of different

stacks of branes. The outcome should be a tensorization of our HAE’s with the Lie algebra

of the Chan-Paton factors and the boundary condition mixing.

We hope to come back to some of the above open issues in future publications.
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